
Stephen Checkoway

Programming Abstractions
Lecture 36: Types

Announcements

Please fill out course evals

We only need 8 more students to fill out the evals to get the extra credit!

Recursive data types

Haskell has lists built in, but let's make our own list type

data List = Cons Int List
 | Empty

This is a recursive data type that says a list is either

‣ A Cons which contains an Int and a List; or it is

‣ Empty

Note that this is a sum of products:

‣ Cons Int List is a (named) product of an Int and a List, Empty is a

(named) product of zero types

‣ List is a sum of these two products

Creating a list

reverseRange :: Int -> List
reverseRange n = if n == 0
 then Empty
 else Cons (n - 1) (reverseRange (n - 1))

ghci> reverseRange 5
Cons 4 (Cons 3 (Cons 2 (Cons 1 (Cons 0 Empty))))

MiniScheme

data Exp = Lit Int
 | Var String
 | App Exp [Exp]
 | IfThenElse Exp Exp Exp
 | Let [String] [Exp] Exp
 | Lambda [String] Exp

Another example of a sum of products

Result

data Result = Ok Int
 | Err String
 deriving (Show)

first :: List -> Result
first Empty = Err "This list is empty!"
first (Cons x xs) = Ok x

ghci> first (Cons 10 (Cons 20 Empty))
Ok 10
ghci> first Empty
Err "This list is empty!"

Note the two definitions for first

This is "pattern matching"

Let's write rest. Does this work?

rest :: List -> Result
rest Empty = Err "This list is empty!"
rest (Cons x xs) = Ok xs

A. Yes, Haskell is awesome!

B. No. Runtime error

C. No. Compile-time error

7

Limitations so far

Our List can only hold integers; our Result can only hold an integer or a string

We could make different list and result types for other types

data IntList = ICons Int IntList | IEmpty
data StringList = SCons String StringList | SEmpty

iLength :: IntList -> Int
iLength IEmpty = 0
iLength (ICons x xs) = 1 + iLength xs

sLength :: StringList -> Int
sLength SEmpty = 0
sLength (SCons x xs) = 1 + sLength xs

Polymorphic types to the rescue!

We can create type constructors which take in one (or more) types and

produce a new type!

data List a = Cons a (List a) | Empty

Now, List is not a type, it's a type constructor

a (or anything starting with a lower case letter) is a type variable

If we apply List to a type like Int or String, we get a new type:

‣ List Int

‣ List String

‣ List (List (Int, String)) — a list of lists of (Int, String) tuples

Defining functions that work on any type of list
Parametric polymorphism

length' :: List a -> Int
length' Empty = 0
length' (Cons x xs) = 1 + length' xs

(Haskell doesn't like when we shadow the built-in length because it doesn't

know which one to use and it wants us to use Main.length to refer to ours so

we used length' (apostrophes are valid characters in names))

What is the type of the map' function which behaves like map, but on our list

type?

Here's the definition:

map' :: ???

map' f Empty = Empty
map' f (Cons x xs) = Cons (f x) (map' f xs)

A. map' :: (a -> b) -> List -> List

B. map' :: a -> b -> List -> List

C. map' :: (a -> b) -> List a -> List b

D. map' :: a -> b -> List a -> List b

11

The real list type

The real list type is a singly-linked list just like in Racket

Rather than using empty and cons for the empty list and the constructor,

Haskell uses

‣ [] — empty list

‣ x:xs — constructor; : takes an element on the left and a list on the right

ghci> 1:2:3:[]
[1,2,3]

: is right-associative so this is the same as

ghci> 1:(2:(3:[]))
[1,2,3]

Revisiting Result

data Result a b = Ok a
 | Err b

first :: [a] -> Result a String
first [] = Err "List is empty"
first (x:xs) = Ok x

rest :: [a] -> Result [a] String
rest [] = Err "List is empty"
rest (x:xs) = Ok xs

ghci> rest [1, 2, 3]
Ok [2,3]

Aside: Types as documentation

Type signatures tell you a lot about what the function does

foo :: [a] -> a

foo takes a list of values of type a and returns a value of type a

What does this tell us about the return value of foo [1, 2, 3, 4]?

bar :: (a -> [b]) -> [a] -> [b]

So bar takes a function a -> [b] and a list of as; it produces a list of bs

Where do the bs come from?

Examples matching those types

head :: [a] -> a

‣ takes a list as input

‣ returns the first element of the list (just like first in Racket)

last :: [a] -> a

‣ takes a list as input

‣ returns the last element of the list

concatMap :: (a -> [b]) -> [a] -> [b]

‣ takes a function f :: a -> [b] and a list of as

‣ applies f to every element in the list and then concatenates all the lists

together

‣ Equivalent to (apply append (map f lst)) in Racket

Type inference

We don't have to give explicit types of functions

Haskell can figure out the most general types itself (in many cases)

reverseConcatMap f xs = reverse (concat (map f xs))

ghci> reverseConcatMap (\n -> [0..n]) [2, 3, 4]
[4,3,2,1,0,3,2,1,0,2,1,0]

ghci> :t reverseConcatMap
reverseConcatMap :: (a1 -> [a2]) -> [a1] -> [a2]

Type inference
(This is a bit hand-wavy)

reverseConcatMap f xs = reverse (concat (map f xs))

Inference starts by assigning the types

reverseConcatMap :: t1 -> t2 -> t3
f :: t1
xs :: t2

Now it can start reasoning about the type of subexpressions

(map f xs) :: [t5] if t1 = t4 -> t5 and
 t2 = [t4]

(concat (map f xs)) :: [t6] if t1 = t4 -> t5,
 t2 = [t4], and
 t5 = [t6]

map :: (a -> b) -> [a] -> [b]
concat :: [[a]] -> [a]
reverse :: [a] -> [a]

Type inference
(This is a bit hand-wavy)

reverseConcatMap :: t1 -> t2 -> t3
f :: t1
xs :: t2

(map f xs) :: [t5] if t1 = t4 -> t5 and

 t2 = [t4]
(concat (map f xs)) :: [t6] if t1 = t4 -> t5,

 t2 = [t4], and
 t5 = [t6]

(reverse (concat (map f xs))) :: [t7] if t1 = t4 -> t5,
 t2 = [t4],
 t5 = [t6], and
 t6 = t7

map :: (a -> b) -> [a] -> [b]
concat :: [[a]] -> [a]
reverse :: [a] -> [a]

Type inference
(This is a bit hand-wavy)

reverseConcatMap :: t1 -> t2 -> t3
f :: t1
xs :: t2
(reverse (concat (map f xs))) :: [t7] if t1 = t4 -> t5,

 t2 = [t4],
 t5 = [t6], and
 t6 = t7

So t3 = [t7] under a set of constraints giving us

t1 -> t2 -> t3 = (t4 -> t5) -> t2 -> t3 substituting t1
 = (t4 -> t5) -> [t4] -> t3 substituting t2
 = (t4 -> t5) -> [t4] -> [t7] substituting t3
 = (t4 -> [t6]) -> [t4] -> [t7] substituting t5
 = (t4 -> [t7]) -> [t4] -> [t7] substituting t6

map :: (a -> b) -> [a] -> [b]
concat :: [[a]] -> [a]
reverse :: [a] -> [a]

Type inference
(This is a bit hand-wavy)

Since reverseConcatMap :: t1 -> t2 -> t3 and

t1 -> t2 -> t3 = (t4 -> [t7]) -> [t4] -> [t7], we have

reverseConcatMap :: (t4 -> [t7]) -> [t4] -> [t7]

We can rename a1 = t4, a2 = [t7] giving

reverseConcatMap :: (a1 -> [a2]) -> [a1] -> [a2]

which matches ghci

ghci> :t reverseConcatMap
reverseConcatMap :: (a1 -> [a2]) -> [a1] -> [a2]

Wrap up

Think of what you've done this semester

No Scheme knowledge → writing an interpreter for MiniScheme!

Key takeaways from the course

‣ Recursion!

‣ Functional programming

- accumulators

- tail recursion

‣ List manipulation functions (map, filter, foldl, foldr)

‣ Parsing and interpreting a language

Course evals

Remember to fill out course evals!

Final exam

Exam Format

Combination of problems (some or all of)

‣ True/false or multiple choice

‣ Short answer

‣ Code to write in DrRacket and uploaded to Blackboard

Exam will be available at 11:00 EDT on Wednesday, June 1, 2022

Your solutions are due by 11:00 EDT on Thursday, June 2, 2022

Late exams are not allowed by College policy (sorry, it's out of my control)

Note: that's 11 a.m.!

Final exam time

During the scheduled final exam time (09:00–11:00 EDT), I will be in my office

However, it's better to ask private questions on Piazza early instead since the

scheduled time is the last two hours of the 24 you have to work on this

Possible question topics

Anything we have covered in the course from day 1 until today, including

‣ Basic Scheme/Racket procedures and special forms

- cons, first, rest, list, append, empty?, filter, and all the others

- define, lambda, if, cond, let, let*, letrec, etc.

‣ map, foldl, foldr

‣ apply

‣ Recursion

- "Normal" recursion

- Tail recursion

- "Accumulator-passing style"

- Continuation-passing style

‣ Closures

- What they are, how we create them, and how we use them

Possible question topics

‣ Backtracking

- Single solution

- All solutions

‣ Environments

- How and when they're created

‣ Lexical vs. dynamic binding

‣ Parameter passing mechanisms

- Pass by value

- Pass by reference

- Pass by name

Possible question topics

‣ Interpreter project

- Creating new structs

- Implementation of the environment

- Parsing expressions

- Evaluating parse trees

- Implementing new features/special forms

‣ Basic runtimes of procedures O(n), O(n log n), O(n2), etc.

‣ Macros

- How they work

- How to write new ones

‣ Promises

‣ Streams

‣ Mutation and boxes

- set! vs. set-box!

- unbox

Practice questions

What is the run time of (range1 n) given the following definition?

(define (range1 n)
 (cond [(zero? n) empty]
 [else (append (range1 (sub1 n)) (list n))]))

A. O(log n)

B. O(n)

C. O(n log n)

D. O(n2)

E. O(2n)

32

What is the run time of (range2 n) given the following definition?

(define (range2 n)
 (letrec ([f (λ (m)
 (cond [(= m n) empty]
 [else (cons m (f (add1 m)))]))])
 (f 0)))

A. O(log n)

B. O(n)

C. O(n log n)

D. O(n2)

E. O(2n)

33

Practice problems

Implement (range n) using accumulator-passing style

Implement (range n) using continuation-passing style

When you implemented MiniScheme, why was (if …) implemented as a

special case in the parser and interpreter rather than implemented as a

primitive procedure?

What fails if you try to implement it as a primitive procedure?

A. Got it!

35

Imagine you had implemented support for macros in MiniScheme, could 

(if …) be implemented as a built-in macro (similar to a primitive procedure

except it's a macro rather than a procedure) rather than as a special case in

the parser/interpreter?

Assume macros in MiniScheme would work similarly to macros in Racket

where patterns are matched against expressions and the output of the

macro is valid MiniScheme code.

A. Yes, it would be easy

B. Yes, it would be difficult

C. No, MiniScheme could never

support macros

D. No, some conditional is needed

36

MiniScheme (and most programming languages including Racket) is a

"strict" language. This means arguments to called functions must be

evaluated before the body of the function is executed.

In contrast, a "lazy" language defers evaluation of arguments until the

arguments are used.

If we made MiniScheme a lazy language by deferring evaluation of

expressions until evaluating primitive procedures, could (if …) be

implemented as a primitive procedure?

A. Yes. When evaluating  

(if then-expr else-expr),  

only one of then-expr or

else-expr would ever need to

be evaluated

B. No. Like with macros,

MiniScheme would still need a

special case for conditionals

37

